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Flashing ratchet model with high efficiency
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As a simple model of the Brownian motor, we consider hopping motion of a particle in a periodic asym-
metric double-well potential which randomly switches between two states. The potential profiles of the states
are identical but shifted by half a period. The current and the efficiency are explicitly calculated as functions
of the parameters of the model, including also a load force. Such a flashing ratchet is shown to be particularly
efficient, with the efficiency tending to unity when the highest peak of the potential is high enough to suppress
the backward motion.

DOI: 10.1103/PhysRevE.69.021102 PACS number~s!: 05.40.2a, 05.60.Cd, 82.20.2w, 87.16.Nn
e-
-
b
f
o

n
ch

s
x-
c-
ex

u

lly

f

e

s

io
iz
a
s

re
ad
n

i,
e-
ex-
ian
cal

r of
n.

mo-

ly
ch
ng
es
ing
hat
the
cy
ng
s it

ar-

ted

dic
s

on
I. INTRODUCTION

Nonequilibrium fluctuations combined with broken r
flection symmetry~usually provided by a periodic but asym
metric potential! can cause directed motion even in the a
sence of any macroscopic bias force. Model systems
nonequilibrium transport based on the rectification
Brownian motion, which are generically calledratchetsor
Brownian motors, have received much attention in rece
years and been discussed in manifold contexts by approa
of varying rigor and sophistication~see, e.g., Refs.@1–3# for
a comprehensive review!. The main motivation comes from
biological applications relevant to ion pumps@4# and motors
~myosin on filament track~actin!, which plays a key role in
muscular contraction@5#, kinesin motors in eucaryotic cell
on microtubules@6#! and also from particle segregation e
periments@7#. Two main types of Brownian motors are re
ognized:flashingratchets where transported particles are
posed to a time-fluctuating energy profile@8–10# androcking
ratchets where the particles experience the action of a fl
tuating force@11#.

In description of the model, of foremost interest is usua
the velocity~in the long-time limit! or the stationarycurrent
of the particles. Considerable recent attention has been
cused on another important quantity, the energeticefficiency,
with which a Brownian motor converts fluctuations into us
ful work, e.g., advances against an external force~see Ref.
@12# for a general review!. Some of actual molecular motor
exhibit a very high efficiency of energy conversion@13#
while flashing ratchets which have attractive features for b
logical systems and particle separation are often recogn
as systems with inefficient energy transduction. Such
opinion is based on the results of detailed analyses of
calledfluctuating potentialmodels@8#, in particular theon-
off ratchet scheme@9#. For these models, diffusive steps a
necessary for directed motion to occur, which evidently le
to substantial energy losses, and that is why efficiency
better than a few percents has been reported~see Refs.@1,12#
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and references therein!. On the other hand, Chauwin, Ajdar
and Prost@10# have shown that if the potential switches b
tween the states with identical spatial periods and with
trema appropriately shifted relative to each other, Brown
motion is not involved in the transport generation. Numeri
analysis of the model with mutually shifted potentials@14#
has demonstrated that its efficiency is more than orde
magnitude larger than for the models requiring diffusio
Thus, with a special setup, not only rocked@15#, but also
flashing ratchets are able to convert energy into directed
tion with high efficiency.

In the present work, we exploit the idea of mutual
shifted potentials invoking a simple hopping model in whi
a combination of thermally activated barrier surmounti
with the switching between two shifted potential profil
leads to directed motion. Our main result is that the flash
ratchet efficiency can be rather high despite the fact t
Brownian motion is involved as a necessary element of
operating cycle. Moreover, it is shown that the efficien
tends to the ideal limit of unity when the barriers preventi
the backward motion become high enough to suppres
completely.

II. THE MODEL

Consider a particle~motor! moving in a potential energy
profile U(x) that describes the interaction between the p
ticle and a track~filament! as a function of the position of the
particle along the track. The potential profile is represen
by a periodic sequence of wells and barriers~see Fig. 1!.

For the sake of simplicity, we assume that the perio
unit of the length 2L consists of two wells with the energie
6u ~from here on the energy is expressed in units ofkBT
51, wherekB is the Boltzmann number andT is the absolute
temperature!. The centers of the wells are located atL/2 and
3L/2. The positions of the potential peaks,V and v, are 0
andL, respectively. Note that within each unit, the reflecti
symmetry is broken.
©2004 The American Physical Society02-1
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We also assume that the potential can take two for
U1(x) andU2(x), which are identical copies of each othe
randomly shifted on half a period to the right or to the le
U2(x)5U1(x6L). The transitions between the1 and the
2 states may be caused by an external signal or by a
from-equilibrium chemical reaction resulting in a conform
tional change of the particle or of the track. They occur at
moments of time that are chosen from an exponential wai
time distribution. In other words, the switching dynamics
considered as a stationary Markov process symbolized by
rate equation

1

g1



g2

2

According to this scheme, the average time spent by
particle in the1~2! state is (g1(2))21.

The model is represented in Fig. 1 where the parame
of the potential profiles are introduced and the linear pot
tial arising from the load force2F (F.0) is added. In this
model, the potential fluctuations which provide the ene
input and a detailed balance violation are combined w
structural asymmetry@16#. Thus, the model has all elemen
required to operate as a Brownian motor.

There are two ways to treat transport in this model. T
first is based on the Fokker-Plank description in which
joint probability density for the particle to be in state1 or 2
at positionx at time t, P 6(x,t), satisfies two Fokker-Plank
equations with source terms

FIG. 1. Schematic representation of the model for a Brown
motor, with the parameters of the potential profiles, the lo
induced linear potential, and the transition rates indicated~see text
for details!. To exemplify, a particle initially found in a well 2 in the
state2 is expected to move into well 1 to the right, if the lifetim
of the state2 is large enough. After the potential has flipped to t
state1, the particle presumably escapes to well 2 thus shifting
the right again. So, the combination of thermally activated bar
surmounting with the potential modulation leads to the uphill flo
of particles.
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]P 1~x,t !

]t
52

]J1~x,t !

]x
2g1P1~x,t !1g2P 2~x,t !,

]P 2~x,t !

]t
52

]J2~x,t !

]x
1g1P 1~x,t !2g2P 2~x,t !,

~1!

while the currentsJ6(x,t) resulting from interaction with the
track, the action of the load force, and diffusion are given

J6~x,t !52
D

kBT F]U6~x!

]x
1F GP 6~x,t !2D

]P 6~x,t !

]x
,

~2!

where D is the diffusion coefficient taken equal in bot
states. The distributionsP 6(x,t) must also satisfy the peri
odic boundary conditions

P 6~x12L,t !5P 6~x,t !, J6~x12L,t !5J6~x,t !,
~3!

and the normalization condition

E
0

2L

@P1~x,t !1P 2~x,t !#dx51. ~4!

This approach is rigorous for the entire range of the poten
modulation frequency. However, explicit analytical solutio
can only be obtained in special cases of potential profile

With an alternative approach, the particle motion is co
sidered as hopping between wells~discrete states! due to
thermal activation. Such a kinetic formulation is more co
venient in view of the purposes of the present study, sinc
allows simple analytical expressions to be obtained for
quantities of interest, which thus become easy to analy
However, the kinetic description is valid when the extern
modulation of the potential is slow compared with the i
trawell relaxation frequencyk0. Another assumption is tha
the potential barriers between any two wells are larger t
kBT.

Applying the kinetic approach to the model sketched
Fig. 1, note that with periodic boundary conditions impos
on the system, it is sufficient to consider only one period.
r i

6(t) be the probability of finding the particle in thei th (i
51,2) well in the state1 or 2 at time t. Evidently,

r1
1~ t !1r2

1~ t !1r1
2~ t !1r2

2~ t !51 ~5!

for all values oft. As Fig. 1 suggests, the time evolution o
the occupancy probabilities is governed by a master equa
of the form
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d

dt S r1
1

r2
1

r2D 5S 2a1
12b1

12g1 a2
11b2

1 g2 0

a1
11b1

1 2a2
12b2

12g1 0 g2

g1 0 2a22b22g2 a21b2 D S r1
1

r2
1

r2D . ~6!
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The a ’s and theb ’s are the transition rates~to the right and
to the left! defined by the Arrhenius-like expressions@18#:

a1
15a2

25k0exp~2v1u2 f !,

a2
15a1

25k0exp~2V2u2 f !,

b1
15b2

25k0exp~2V1u1 f !,

b2
15b1

25k0exp~2v2u1 f !, ~7!

wheref 5FL/(2kBT). Note thata1
6a2

65b1
6b2

6 for f 50, in
accordance with the condition of the detailed balance, wh
is valid within each state but violated for the whole syste
due to switching between states.

It should be mentioned that various versions of the d
crete model for Brownian motors have been proposed
analyzed~see Refs.@1,2#!. At first glance, the model pro
posed here closely resembles those introduced by Amb
and Kehr@20# and by Astumian@21#. However, our model is
different from the toy model@20# in that we assume the
potential profiles of states to be identical~but shifted! copies
whereas the model@20# consists of two states, one wit
asymmetric and the other with symmetric hopping rates
comparison of our model with that in Ref.@21# reveals two
main distinctions:~i! we consider the1→2 and2→1 tran-
sitions both driven externally, whereas Astumian assum
the second transition to occur spontaneously;~ii ! in Ref.
@21#, the heights of the barriers controlling the backwa
motion are the same for wells 1 and 2~both in the1 and2
states!, i.e., all theb’s are equal, whereas we suppose that
left barrier can be higher than the right one, i.e.,b1

15b2
2

,b2
15b1

2 . Recall that the models introduced in Refs.@20#
and @21# exhibit a low efficiency. By contrast, the prese
model allows us to construct flashing ratchet with a dra
cally higher energy transduction efficiency, as demonstra
in the following section. It is notable that the high efficien
of energy conversion can also be reached when the energ
the alternating electric field which interacts with charg
transporters is used to pump uncharged ligands across
membrane against a concentration gradient@22,23# @a phe-
nomenon known as ‘‘electroconformational coupling’’~ECC!
@4##. There exists a formal analogy between the pres
model and the ECC model, which will be discussed m
fully elsewhere.

III. RESULTS AND DISCUSSION

Master equation~6! determines the particle motion. Afte
transient effects have died out, the system approache
02110
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steady state characterized bydr i
6/dt50. The steady-state

solution of Eq. ~6! satisfying the normalization condition
Eq. ~5!, can be written as

r1,2
1 5

g2

G~G1S!
Fa2,1

1 1b2,1
1 1g67

~a2
11b2

1!~g12g2!

S G ,
r1,2

2 5r2,1
1 1

~a1,2
1 1b1,2

1 !~g12g2!

GS
. ~8!

@using double sign notation (6 or 7), we imply that the
upper sign refers to the first subscript and the lower s
refers to the second subscript#. Here we have introduced th
overall ratesS5a1

11b1
11a2

11b2
1 andG5g11g2 char-

acterizing the frequency of hopping between the wells and
the potential fluctuations, respectively. Additionally, in th
steady state, Eq.~1!, when integrated overx, takes the form

J6~x!6E
0

x

@g1P 1~x8!2g2P 2~x8!#dx85J6~0!. ~9!

In what follows, we use Eq.~9! and the steady-state dis
tribution specified by Eq.~8! to discuss the directed curren
of particles and the energetic efficiency which are the qu
tities of foremost interest in the context of Brownian mot
operation.

A. Current

A stationary solution implies the constant positio
independent currentJ5J1(x)1J2(x). Within the kinetic
approach, the current is simply the hopping rate to the ri
minus the hopping rate to the left for wells 1 and 2 both
the 1 and2 states~see Fig. 1!:

J5a1
1r1

11a1
2r1

22b2
1r2

12b2
2r2

2 . ~10!

Using Eq. ~8!, the current is expressible in the physical
suggestive form

J5
a1

1a2
12b1

1b2
1

S
1g*

~a1
12a2

1!22~b1
12b2

1!2

S~G1S!
,

~11!

where (g* )215(g1)211(g2)21. The first term in Eq.~11!
independent of the potential modulation frequency repres
a negative~downhill! current due to the load forceF and
disappears in the unloaded (F50) regime. The second term
plays a key role in describing the ratchet effect. It predi
the positive~uphill! particle transport subject to the threefo
condition: ~i! flips between two potential states~potential
2-3
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flashes! do occur ~both g1 and g2 are nonzero!; ~ii ! the
spatial asymmetry is provided (a1

1Þa2
1 or b1

1Þb2
1); ~iii !

the load forceF is not too large. Note that at the fixed fli
rateG, the quantityg* ~and hence the uphill current! takes
its maximal value wheng15g2[g. Such a symmetric
driving is thus the most advantageous one and will be
ferred to asoptimal modulation.

To more fully examine how the current as a function
the applied force behaves upon variation of the model
rameters, it is expedient to rewrite the current, Eq.~11!, with
the rates defined in Eq.~7!. For the optimal modulation, the
corresponding expression is given by

J~ f !/k0

5
1

2

e2vsinh~u2 f !2e2V@sinh~u1 f !12z sinh~2 f !#

11z@cosh~u2 f !1e2V1vcosh~u1 f !#
,

~12!

wherez[(k0 /g)e2v.
First, we focus on the unloaded situation, since this cas

usually of special interest. ForF50, Eq. ~12! is reduced to

J~0!/k05
1

2
e2vsinh~u!

12e2V1v

11z cosh~u!~11e2V1v!
.

~13!

One readily sees thatJ(0) is zero forg50 and linearly in-
creases with g in the slow modulation regime,g
!k0e2vcoshu. As the flip rate is raised further, Eq.~13!
predicts a monotonic increase inJ(0) with g and the current
saturation at infinite flip rate. This is, however, a forme
noticed@20# artifact of the kinetic approach which is invali
at fast flip rates,g>k0. What actually happens in the fa
modulation regime is that the current diminishes with risi
g ~and tends to zero wheng→`) because the time betwee
switches becomes too short to establish an equilibrium
tribution between wells 1 and 2 and the mechanism of
rected motion thus breaks down. This is the case for any t
of the flashing ratchet model, as pointed out in Ref.@1#.

The uphill current is a monotonically decreasing functi
of f. An important characteristic of a Brownian motor is
value of the forcef s ~usually named stopping force!, at
which an exact cancellation of the ratchet effect takes pla
i.e., J( f s)50. Equation~11! suggests two mechanisms fo
the behavior of the functionJ( f ) and the valuef s : ~i! an
increase~in modulus! of the negative current due to the loa
as specified by the first term in Eq.~11!; ~ii ! equalization of
potential wells 1 and 2 with the enhancement of the lo
force @the relative well energy is 2(u2 f ) in the presence o
an external field~see Fig. 1!#, which evidently diminishes the
second term responsible for the ratchet effect. Note that
first term vanishes when the highest barrier tends to infin
For such impenetrable barriers, it is the second mechan
that solely causes the current to decrease withf and the stop-
ping force takes its maximal valuef s5u. In this case (V
@1), Eq. ~12! takes an especially simple form when th
potential modulation is slow,z@1:
02110
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J~ f !5
1

2
g tanh~u2 f !. ~14!

This result is easily obtained also in terms of the Fokk
Plank approach. Indeed, using Eq.~9! and relationJ6(x)
5J7(x1L) which follows from the conditionU2(x)
5U1(x1L), the current can be expressed as

J5J1~0!1J2~0!5gR~L !12J1~0!, ~15!

whereR(x)5*0
x@P 2(x8)2P 1(x8)#dx8. Provided a poten-

tial fluctuates very slowly, the distribution fully relaxes t
eitherU1(x) or U2(x) after every flip, i.e., the probability
densitiesP 6(x) in the low-frequency domain are mainl
determined by the potential profilesU6(x), whereas the role
of the parametersg (g15g25g in the optimal modulation
regime considered here! andD is insignificant. Letx50 cor-
responds to the position of the highest peak ofU1; then
J1(0) represents the backward motion which is negligib
whenV@1. In estimatingR(L) note that when the barrier
are high, the main contribution into the integral comes fro
the vicinity of the potential well located atL/2. The potential
profiles are assumed identical in this region,U1(x)
.U2(x)12u, and hence we haveP 2(x).exp@2(u
2f)#P 1(x) for x close toL/2. From these relations and th
normalization condition, Eq.~4!, it follows that R(L)
.(1/2)tanh(u2f). Thus in the casez,V@1, the current cal-
culated in terms of the Fokker-Plank equation, Eq.~9!, coin-
cides with the result of the kinetic approach, Eq.~14!, as one
would expect.

The typical behavior of the steady-state current as a fu
tion of the applied force is exemplified in Fig. 2 for differen
values of the potential parameters. As is seen from panel~a!,
both the current and the stopping force increase withV. Also,
note that the effect ofV on the current is negligible at sma
values of the load and becomes significant as the load gro
Such a behavior is caused not only by the reduction of
load-induced negative current due to the rise inV @see the
first term in Eq. ~11!# but also by the suppression of th
backward motion which accordingly increases the sec
term in Eq.~11!. At large values ofV, the current takes the
largest value and the stopping force approaches its limif s
5u. More precisely, the large-V asymptotic behavior of the
stopping force is given by

f s.@12~1/21z!«#u, ~16!

where«[2e2V1vsinh(2u)/u is small,«!1.
The relative well energy 2u ~along with the potential

modulation! plays a role of ‘‘a driving force’’ for the directed
particle transport. It is not surprising, then, that a rise inu
serves to increase the current and the stopping force@see
panel~b!#. The influence of the parameterv on J and f s is
just opposite to that ofV @see panel~c!#, since an increase in
v leads the positive current to reduce@see the second term i
Eq. ~11!#.

In our model, the velocityU of unidirectional motion in-
duced by the flips between the potential states is relate
the steady-state current by the equation
2-4
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U52LJ. ~17!

With the set of parameter values taken from Ref.@21#: V
514.5, v55.5, u54.5, 2L51028 m, k05103 s21, and g
5102 s21, the particle velocityU at zero force is 3.24
31027 m/s and the stopping forceFs ~at T5300 K) is 6.9
310212 N. It is worthy of mention that the calculated value
of the velocity and the stopping force reproduce the co
sponding experimental data for molecular motors@6# within
an order of magnitude.

B. Efficiency

The model discussed in this paper is based on an o
ously nonequilibrium mechanism. Every time the potentia
rapidly changed, the particle distribution relaxes to the eq
librium profile and, as a result, some portion of the ene
input into the system is dissipated to the thermal bath a
heat. The energetic efficiency is one of the simplest therm

FIG. 2. Particle current as a function of the external load,
~12!, with one parameter of the potential varied@V for ~a!, u for ~b!,
v for ~c!# and the other two kept constant. For all curvesg/k0

50.1.
02110
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dynamical characteristics indicating to which degree pot
tial fluctuations are converted into useful work.

As for any macroscopic motor, the energetic efficiency
a Brownian motor is defined as the ratioh of the power
outputPout to the power inputPin

h5
Pout

Pin
. ~18!

The output power is the mechanical work~per unit time!
done against the external force,Pout5FU. It is easily found
using Eqs.~12! and~17!. Following Refs.@12,24#, the power
input into the system stemming from the potential modu
tion can be written as

Pin52u@g1~r2
12r1

1!1g2~r1
22r2

2!#. ~19!

Indeed, referring to Fig. 1, in each flip from the state1~2!
to 2~1! the particle gains or releases the energy 2u, accord-
ing to whether it is in well 2~1! or 1~2!; on average,g1(2)

such flips occur in a unit time. With Eq.~8! for the occu-
pancy probabilities, Eq.~19! reads

Pin5
4ug*

G1S
~a1

11b1
12a2

12b2
1!. ~20!

Finally, rewriting the above relation forPin in terms of the
model parameters@in view of Eq. ~7!# and substitutingPin
andPout into Eq.~18!, we arrive at the desired expression f
the efficiency of the Brownian motor. In the case of the o
timal modulation (g5g15g2), this expression takes th
form

h~ f !5
f

u

sinh~u2 f !2e2V1v@sinh~u1 f !12z sinh~2 f !#

sinh~u2 f !1e2V1vsinh~u1 f !
.

~21!

One can ascertain thatPin.Pout, i.e.,h,1, for all values of
the parameters whenPout.0, as it must be. The current an
hencePout monotonically diminish withf and become zero a
f 5 f s . Interestingly, the dependencePin( f ) exhibits more
complicated behavior. For largeV, more precisely forV.v
12u, the power input also drops withf and becomes zero a
f 5 f 0. Note that the inequalityf s,u, f 0 holds, bothf s and
f 0 tending to the same limitu ~the former from the left, the
latter from the right! at V→`. Thus only at very largeV, Pin
and Pout change sign simultaneously and the energy tra
duction is completely reversible~a similar observation was
made for the ECC model@23#!. For V<v12u, the depen-
dencePin( f ) can exhibit nonmonotonic behavior and, wh
is especially important, the power input remains positive
all values off. The latter circumstance implies that the pr
cess is not reversible when the highest potential peak
lower thanv12u. This remark is also in agreement with th
conclusion of Ref.@23#, pointing to a formal analogy be
tween the present model and the ECC model.

The efficiency increases withg for an adiabatically slow
modulation,g!k0, where the kinetic approach holds. Figu
3 illustrates the variation of the functionh( f ), Eq.~21!, with

.

2-5
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the parameters of the potential. All the curves exhibit a si
lar nonmonotonic behavior: The efficiency is equal to zero
f 50, linearly increases withf in the regionf ! f s , reaches
its maximal valuehm , and rapidly goes to zero whenf ap-
proachesf s . An initial increase in efficiency withf is attrib-
uted to the equalization of the potential wells and hence
the lowering of the energy loss. Whenf→ f s , Pout goes to
zero whereasPin remains finite, and henceh→0 ~except the
idealized case ofV5` when h51 at f 5 f s), which is in
agreement with the conclusion of Refs.@2,14# that the effi-
ciency vanishes at stalling conditions (f 5 f s). The maximum
of h( f ) arising from the competition between the two abov
mentioned effects is located nearf s .

As Fig. 3 @panel ~b!# shows, the lesseru, the higher the
efficiency. In particular, a linear initial growth ofh is char-
acterized by its slope proportional tou21. The point is that a
drop in the relative well energyu cuts the relaxation-induce
energy loss and hence leads to an increase in the motor
ciency. It should be remembered, however, that asu lowers,
the current and the stopping force also reduce~see Fig. 2!, so
that the operatingf range of the ratchet shrinks.

FIG. 3. Efficiency as a function of the external load, Eq.~21!,
with the parameters of the potential varied as in Fig. 2. For
curvesg/k050.1.
02110
i-
t

o

-

ffi-

There exists another more attractive way to achieve a h
efficiency. As panel~a! of Fig. 3 suggests, the maximal effi
ciency ~and the operating range! of the motor grows with
rising V. Particularly striking are very high values ofh at
forces close tof s for largeV. In this range off and provided
«!1, Eq. ~21! is reduced to

h.
f

u F11
11z

f s2 f
u«G21

. ~22!

Using this approximate expression, one can readily see
the efficiency reaches its maximum

hm.122A~11z!« ~23!

at f 5 f m.@12A(11z)«#u, f s . As expected, the corre
sponding currentJ( f m)/k0.(1/2)A«/(11z)ue2v is very
small but nonzero. It follows from Eq.~23! that the maximal
efficiency of the motor tends to the ideal limit of unity, as th
highest potential barrier increases. This conclusion is
main result of the paper. The idea behind it is easy to co
prehend. At large values ofV, the stopping force is close to
its limiting valueu ~due to suppression of the backward m
tion!. When the load forcef is near f m , (u2 f m)!1, the
difference between the well energies 2(u2 f ) becomes very
small. This means that the motor works under quasiequi
rium conditions at every given time instant and the ene
loss can be made arbitrarily small, in agreement with
observation made in Ref.@14# that the main energy loss re
sults from backward steps.

Let us discuss the efficiency of the model in terms of t
Fokker-Plank approach, restricting the consideration to
optimal modulation regime. The power output is easily fou
using Eqs.~15! and ~17!. The power input is determined b
@12,24#

Pin5gE
0

2L

@U1~x!2U2~x!#@P 2~x!2P 1~x!#dx.

~24!

The main contribution into the integral is attributed to t
vicinity of the potential wells located atL/2 and 3L/2, where
the potential profiles are assumed identical, i.e.,U1(x)
.U2(x)12u for x close toL/2 and U2(x).U1(x)12u
for x close to 3L/2. In the low-frequency domain,z@1, this
leads to the power input estimated asPin.4ugR(L) and
hence to the efficiency, Eq.~18!, expressed by

h.
f

u F11
2J1~0!

gR~L ! G . ~25!

The currentJ1(0),0 representing the backward motio
vanishes whenV→` and Eq.~25! coincides with the predic-
tion of the kinetic approach, Eq.~23!, in this limit.

Our last remark in this section concerns so-calledrevers-
ible ratchets@24# which also achieve the maximal possib
efficiency at certain conditions. Though the operating mec
nism of this ratchet type is essentially different~potential
barriers and wells are modulated out of phase and v
gradually, whereas our model implies in-phase rapid mo

ll
2-6
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FLASHING RATCHET MODEL WITH HIGH EFFICIENCY PHYSICAL REVIEW E69, 021102 ~2004!
lation!, the result for the efficiency appears very similar
that obtained here@cf. Eq. ~23! with Eq. ~15! in Ref. @24##.
The origin of such likeness will be discussed elsewhere.

IV. CONCLUSIONS

In this paper we have considered a flashing ratchet mo
where a particle moves unidirectionally in a periodic pote
tial ~with two nonequivalent wells within a period! flipping
between two identical states shifted by a half a peri
Within the framework of the kinetic approach, we have o
tained explicit expressions for the steady-state current,
~12!, and the energetic efficiency, Eq.~21!, which are the
quantities of paramount importance in the context of Brow
ian motor operation. Using these expressions, we have
lyzed and discussed in detail the role of the model para
eters in the particle transport. The main results of the kin
consideration have been supported by the simple estim
obtained within the Fokker-Plank approach.

The appeal of the model is that its efficiency can be i
pressively high. Indeed, with the set of parameter values
posed in Ref.@21# ~see the last paragraph in Sec. III A!, the
maximal efficiencyhm found here is 0.6, whereashm lesser
than 0.05 was reported in Ref.@21#. The reason is that ou
er

.

V.
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s.
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model can be tuned so as to take the maximum advantag
the asymmetry between the rightward and leftward mot
and to involve, in essence, no useless stages in the wor
cycle. Moreover, the efficiency of the Brownian motor co
sidered here is shown to tend to the ideal limit of un
provided that the highest peaks of the potential are h
enough to become factually impenetrable. In other wor
such a high efficiency is reachable when the backward m
tion is locked and thermally activated hopping between
ergy wells occurs under quasiequilibrium conditions at ev
given time instant and the energy loss can be made arbitra
small. We have thus demonstrated with the analytically tre
able example that the scenario of the potential modula
proposed in Ref.@10# leads to high-efficiency flashing ratch
ets not only without~as shown earlier@14#! but also with
diffusive steps involved in unidirectional motion generatio

ACKNOWLEDGMENTS

The authors thank M.L. Dekhtyar for helpful commen
on the manuscript. This work was supported by Academ
Sinica. Yu.A.M. and V.M.R. gratefully acknowledge the kin
hospitality received from the Institute of Atomic and Mo
lecular Sciences.
ter.

,
-

.

an

ex-
de-
the

J.

ro-
@1# P. Reimann, Phys. Rep.361, 57 ~2002!.
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