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Flashing ratchet model with high efficiency
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As a simple model of the Brownian motor, we consider hopping motion of a particle in a periodic asym-
metric double-well potential which randomly switches between two states. The potential profiles of the states
are identical but shifted by half a period. The current and the efficiency are explicitly calculated as functions
of the parameters of the model, including also a load force. Such a flashing ratchet is shown to be particularly
efficient, with the efficiency tending to unity when the highest peak of the potential is high enough to suppress
the backward motion.
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I. INTRODUCTION and references thergirOn the other hand, Chauwin, Ajdari,
and Pros{10] have shown that if the potential switches be-
Nonequilibrium fluctuations combined with broken re- tween the states with identical spatial periods and with ex-
flection symmetry(usually provided by a periodic but asym- trema appropriately shifted relative to each other, Brownian
metric potential can cause directed motion even in the ab-motion is not involved in the transport generation. Numerical
sence of any macroscopic bias force. Model systems fopnalysis of the model with mutually shifted potentigisi]
nonequilibrium transport based on the rectification ofh@s demonstrated that its efficiency is more than order of
Brownian motion, which are generically calledtchetsor ~ Magnitude larger than for the models requiring diffusion.
Brownian motors have received much attention in recent Thus, with a special setup, not only rockgtb], but also
years and been discussed in manifold contexts by approachfashing ratchets are able to convert energy into directed mo-
of varying rigor and sophisticatiofsee, e.g., Ref§1—3] for  tion with high efficiency. _ _
a comprehensive reviewThe main motivation comes from I the present work, we exploit the idea of mutually
biological applications relevant to ion pump$ and motors shifted p_ote_nuals invoking a S|m|_ole hopplng. model in wh!ch
(myosin on filament trackactin), which plays a key role in @ combination of thermally activated barrier surmounting
muscular contractiofi5], kinesin motors in eucaryotic cells With the switching between two shifted potential profiles
on microtubuleg6]) and also from particle segregation ex- leads to dl_re_cted motion. Our maln_result is Fhat the flashing
periments7]. Two main types of Brownian motors are rec- ratche; efﬁmency_ca_m be rather high despite the fact that
ognized:flashingratchets where transported particles are exBrownian motion is involved as a necessary element of the
posed to a time-fluctuating energy profi@&-10] androcking ~ OPerating cy_cle. Moreover, it is shown that. the eﬁ|C|eqcy
ratchets where the particles experience the action of a flud€nds to the ideal limit of unity when the barriers preventing
tuating force[11]. the backward motion become high enough to suppress it
In description of the model, of foremost interest is usuallycompletely.
the velocity (in the long-time limi} or the stationaryurrent
of the particles. C_onsiderable recent attention ha_s been fo- Il. THE MODEL
cused on another important quantity, the energefficiency
with which a Brownian motor converts fluctuations into use- Consider a particlémotor) moving in a potential energy
ful work, e.g., advances against an external fai@ee Ref. profile U(x) that describes the interaction between the par-
[12] for a general revieyv Some of actual molecular motors ticle and a tracKfilamen as a function of the position of the
exhibit a very high efficiency of energy conversiph3]  particle along the track. The potential profile is represented
while flashing ratchets which have attractive features for bioby a periodic sequence of wells and barrigsse Fig. L
logical systems and particle separation are often recognized For the sake of simplicity, we assume that the periodic
as systems with inefficient energy transduction. Such anmnit of the length 2 consists of two wells with the energies
opinion is based on the results of detailed analyses of soxu (from here on the energy is expressed in unitkgf
calledfluctuating potentiainodels[8], in particular theon- =1, wherekg is the Boltzmann number aridis the absolute
off ratchet schemg9]. For these models, diffusive steps are temperaturg The centers of the wells are located 2 and
necessary for directed motion to occur, which evidently leadSL/2. The positions of the potential peaké,andv, are 0
to substantial energy losses, and that is why efficiency nandL, respectively. Note that within each unit, the reflection
better than a few percents has been repaided Refs[1,12]  symmetry is broken.
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FIG. 1. Schematic representation of the model for a Brownian . . . .. .
motor, with the parameters of the potential profiles, the loag-Where D is the diffusion coefficient taken equal in both

induced linear potential, and the transition rates indicéses text ~ States. The d'St”bUt!Q”@i(X’t) must also satisfy the peri-
for detailg. To exemplify, a particle initially found in a well 2 in the ©0dic boundary conditions

state— is expected to move into well 1 to the right, if the lifetime
of the state— is large enough. After the potential has flipped to the 4 4 4 N
state+, the particle presumably escapes to well 2 thus shifting to PE(x+2L)=P7(x1), JI7(x+2L,H=J7(x1),

the right again. So, the combination of thermally activated barrier 3
surmounting with the potential modulation leads to the uphill flow

of particles. and the normalization condition

We also assume that the potential can take two forms, L
U™ (x) andU ~(x), which are identical copies of each other, + - _
randomly shifted on half a period to the right or to the left, 0 [PTOGD+P(x]dx=1. “)
U~ (x)=U"(x*L). The transitions between the and the
— states may be caused by an external signal or by a far-
from-equilibrium chemical reaction resulting in a conforma- This approach is rigorous for the entire range of the potential
tional change of the particle or of the track. They occur at thenodulation frequency. However, explicit analytical solutions
moments of time that are chosen from an exponential waitingan only be obtained in special cases of potential profiles.
time distribution. In other words, the switching dynamics is  With an alternative approach, the particle motion is con-

considered as a stationary Markov process symbolized by thgidered as hopping between welldiscrete statgsdue to
rate equation thermal activation. Such a kinetic formulation is more con-

venient in view of the purposes of the present study, since it
allows simple analytical expressions to be obtained for the

Y guantities of interest, which thus become easy to analyze.
+= = However, the kinetic description is valid when the external
v modulation of the potential is slow compared with the in-

trawell relaxation frequencl. Another assumption is that

. . . the potential barriers between any two wells are larger than
According to this scheme, the average time spent by thﬁ Tp y 9
B .

particle in the+(—) state is (7)) L.
The model is represented in Fig. 1 where the parameters;
?.f lthe. pote?tlal pt)rr]ofllles dafre mtrgdulgidoaljd tg(ej Ilgelar tﬁptenbn the system, it is sufficient to consider only one period. Let
lal arising from the load force-F (F>0) is added. Inthis = )"0 s ropability of finding the particle in theh (i
model, the potential fluctuations which provide the energy' ) ‘ .
) ) o . 27=1,2) well in the statet or — at timet. Evidently,
input and a detailed balance violation are combined with
structural asymmetrj/16]. Thus, the model has all elements
required to operate as a Brownian motor. SO +ps (D +p () +p; (D=1 (5)
There are two ways to treat transport in this model. The 1 P2 P P2
first is based on the Fokker-Plank description in which the

Applying the kinetic approach to the model sketched in
g. 1, note that with periodic boundary conditions imposed

joint probability density for the particle to be in stateor — for all values oft. As Fig. 1 suggests, the time evolution of
at positionx at timet, P *(x,t), satisfies two Fokker-Plank the occupancy probabilities is governed by a master equation
equations with source terms of the form
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The a’s and theB’s are the transition rateio the right and  steady state characterized Oy, /dt=0. The steady-state
to the lefy defined by the Arrhenius-like expressidris]: solution of Eq.(6) satisfying the normalization condition,

Eq. (5), can be written as
ai =a, =keexp—v+u—f),

Y~ L (az+B) (v =y7)
@ = a; =keexp —V—u—f), Pl TS| @at Baat V' T s ,
B1 = B; =Keexp(—V+u+f), L (@B )
P12=pP217F rs . (8)
B = B1 =keexp(—v—u+f), (7)

D [using double sign notation# or *), we imply that the
wheref =FL/(2kgT). Note thata; a; =81 8, for f=0,in  upper sign refers to the first subscript and the lower sign
accordance with the condition of the detailed balance, whichefers to the second subsciiiptiere we have introduced the
is valid within each state but violated for the whole systemgyerall ratesgzaf+ﬂl++ a2++,3; andI'=y"+y~ char-
due to switching between states. acterizing the frequency of hopping between the wells and of

It should be mentioned that various versions of the disthe potential fluctuations, respectively. Additionally, in the

crete model for Brownian motors have been proposed angteady state, Eq1), when integrated ovex, takes the form
analyzed(see Refs[1,2]). At first glance, the model pro-

posed here closely resembles those introduced by Ambaye . XL, e, R

and Kehr[20] and by Astumiari21]. However, our model is IT(x)= 0[7 Pr(x) =y PT(x)]dx'=J7(0). (9
different from the toy mode[20] in that we assume the

potential profiles of states to be identi¢hUt shifted copies In what follows, we use Eq9) and the steady-state dis-

whereas the mod€gl20] consists of two states, one with tribution specified by Eq(8) to discuss the directed current
asymmetric and the other with symmetric hopping rates. Aof particles and the energetic efficiency which are the quan-
comparison of our model with that in R421] reveals two tities of foremost interest in the context of Brownian motor
main distinctions(i) we consider ther—— and——+ tran-  operation.

sitions both driven externally, whereas Astumian assumed

the second transition to occur spontaneously); in Ref. A. Current
[21], the heights of the barriers controlling the backward . . _ .
motion are the same for wells 1 andtoth in the+ and— . A stationary solution implies the constant position-

states, i.e., all theg's are equal, whereas we suppose that thdhdependent currend=J"(x)+J"(x). Within the kinetic
left barrier can be higher than the right one, i,8;,= 3, approach, the current is simply the hopping rate to the right

<B3=p; . Recall that the models introduced in Ref20] minus the hopping rate to the left for wells 1 and 2 both in

and[21] exhibit a low efficiency. By contrast, the present the + and — states(see Fig. 1

model allows us to construct flashing ratchet with a drasti- J=atoT+a o —B o =807 . (10)
cally higher energy transduction efficiency, as demonstrated 1P 1P1~P2pz =Pz P2

in the following section. It is notable that the high efficiency Using Eq. (8), the current is expressible in the physically
of energy conversion can also be reached when the energy sfiggestive form

the alternating electric field which interacts with charged

transporters is used to pump uncharged ligands across the aja; — BB . (ag —a3)?=(B1 —B3)°
membrane against a concentration gradi@2,23 [a phe- J= S Ty S(T+3) '
nomenon known as “electroconformational couplin@CoO (12)

[4]]. There exists a formal analogy between the present

model and the ECC model, which will be discussed morewhere (*)*=(y") '+ (y~) " The first term in Eq(11)

fully elsewhere. independent of the potential modulation frequency represents
a negative(downhill) current due to the load forcé and

IIl. RESULTS AND DISCUSSION disappears in the'unloadejél_(:O) regime. The second term
plays a key role in describing the ratchet effect. It predicts
Master equatior6) determines the particle motion. After the positive(uphill) particle transport subject to the threefold
transient effects have died out, the system approaches aondition: (i) flips between two potential statépotential
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flashe$ do occur(both y* and y~ are nonzerp (ii) the 1

spatial asymmetry is providedy{ # a, or By #f5); (iii) J(f) =5 ytanku—f). (14

the load forceF is not too large. Note that at the fixed flip

ratel’, the quantityy* (and hence the uphill currentakes This result is easily obtained also in terms of the Fokker-

its maximal value wheny" =y~ =y. Such a symmetric plank approach. Indeed, using E@) and relationd*(x)
driving is thus the most advantageous one and will be re= 3% (x+L) which follows from the conditionU~(x)

ferred to asoptimal modulation. _ =U"(x+L), the current can be expressed as
To more fully examine how the current as a function of
the applied force behaves upon variation of the model pa- J=J"(0)+J7(0)=yR(L)+2J3%(0), (15)

rameters, it is expedient to rewrite the current, 8q), with
the rates defined in E@7). For the optimal modulation, the whereR(x)= [P~ (x") =P *(x’)]dx’. Provided a poten-

corresponding expression is given by tial fluctuates very slowly, the distribution fully relaxes to
eitherU*(x) or U~ (x) after every flip, i.e., the probability
J(F)/ko densitiesP “(x) in the low-frequency domain are mainly

o e - , determined by the potential profilés™ (x), whereas the role
:E e “sinh(u—f)—e Y[sinh(u+f)+2{ sinh(2f)] of the parametery (y* =y~ = in the optimal modulation
2 1+ {[cosiu—f)+e VY vcoshu+f)] ' regime considered herandD is insignificant. Letx=0 cor-
12 responds to the position of the highest peaklWf; then
J*(0) represents the backward motion which is negligible
whenV>1. In estimatingR(L) note that when the barriers
re high, the main contribution into the integral comes from
the vicinity of the potential well located &t/2. The potential
profiles are assumed identical in this regiol,*(x)

wherel=(kqy/y)e™".
First, we focus on the unloaded situation, since this case i
usually of special interest. Fét=0, Eq.(12) is reduced to

1 1_e-V+v =U"(x)+2u, and hence we haveP (x)=exg2(u
J(0)/kn== e ’sinh(u ) —f)]P*(x) for x close toL/2. From these relations and the
(0)/ko=>5 €~ *sintu) =
1+ coskHu)(1+e ) normalization condition, Eq.(4), it follows that R(L)

(13 =(1/2)tanh¢—f). Thus in the casé,V>1, the current cal-
] ] ) ] culated in terms of the Fokker-Plank equation, E3), coin-

One readily sees thal(0) is zero fory=0 and linearly in-  ciges with the result of the kinetic approach, Etd), as one
creases with y in the slow modulation regime,y  \ould expect.
<koe “coshu. As the flip rate is raised further, Eq13) The typical behavior of the steady-state current as a func-
predicts a monotonic increaseJ(0) with y and the current  tjon of the applied force is exemplified in Fig. 2 for different
at fast flip rates,y=ko. What actually happens in the fast note that the effect of on the current is negligible at small
modulation regime is that the current diminishes with risingyajues of the load and becomes significant as the load grows.
y (and tends to zero whep— ) because the time between sych a behavior is caused not only by the reduction of the
switches becomes too short to establish an equilibrium disgpad-induced negative current due to the risevifisee the
tribution between wells 1 and 2 and the mechanism of dl'f|rst term in Eq(ll)] but also by the Suppression of the
rected motion thus breaks down. This is the case for any typgackward motion which accordingly increases the second
of the flashing ratchet model, as pointed out in R&f. term in Eq.(11). At large values oWV, the current takes the

The Uphl” current is a monotonica”y deCfeaSing fUnCti0n|argest value and the Stopping force approaches its ﬁg‘nt

of f. An important characteristic of a Brownian motor is a —y. More precisely, the larg¥-asymptotic behavior of the
value of the forcefs (usually named stopping foreat  stopping force is given by

which an exact cancellation of the ratchet effect takes place,

i.e., J(fs)=0. Equation(1l) suggests two mechanisms for fe=[1—(1/2+ {)e]u, (16)
the behavior of the functiod(f) and the valuef: (i) an

increasgin modulug of the negative current due to the load, wheres=2e™ V" Vsinh(Q)/u is small,s <1.

as specified by the first term in E(L1); (ii) equalization of The relative well energy @ (along with the potential
potential wells 1 and 2 with the enhancement of the loadnodulation plays a role of “a driving force” for the directed
force[the relative well energy is 2(—f) in the presence of particle transport. It is not surprising, then, that a risauin
an external fieldsee Fig. 1], which evidently diminishes the serves to increase the current and the stopping ffsee
second term responsible for the ratchet effect. Note that thpanel(b)]. The influence of the parameteron J and f is
first term vanishes when the highest barrier tends to infinityjust opposite to that o¥ [see pane(c)], since an increase in
For such impenetrable barriers, it is the second mechanism leads the positive current to redusee the second term in
that solely causes the current to decrease fvthd the stop- Eq. (11)].

ping force takes its maximal valug,=u. In this case ¥ In our model, the velocity/ of unidirectional motion in-
>1), Eq. (12 takes an especially simple form when the duced by the flips between the potential states is related to
potential modulation is slow;>1: the steady-state current by the equation
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4 ' ' - dynamical characteristics indicating to which degree poten-
tial fluctuations are converted into useful work.

As for any macroscopic motor, the energetic efficiency of
a Brownian motor is defined as the ratip of the power
output P, to the power inpuf;,

_ POUt
7P

. (18
n
The output power is the mechanical wofger unit time
done against the external forde,,—= FU. It is easily found
using Eqs(12) and(17). Following Refs[12,24), the power
input into the system stemming from the potential modula-
i tion can be written as

Pin=2uly"(p; —p1)+ v (p1 —p2)]- (19

Indeed, referring to Fig. 1, in each flip from the staté—)
to —(+) the patrticle gains or releases the energy accord-
1 ing to whether it is in well 21) or 1(2); on averagey (")
such flips occur in a unit time. With Ed8) for the occu-
pancy probabilities, Eq19) reads

2
102 Jk,

*

@ 4uy
| Pin=ps (@1 +B1—a3 = B3). (20

Finally, rewriting the above relation fd?;, in terms of the

. model parameterfin view of Eq. (7)] and substitutingP;,
andP, into Eq.(18), we arrive at the desired expression for
the efficiency of the Brownian motor. In the case of the op-
] timal modulation ¢/=y"=+y7), this expression takes the
form

V=11.0 145 18.0

% 1 2 s 3 f sinhu—f)—e V*[sinhu+f)+2¢ sinh(2f)]

n(f)=— : :
f u sinhu—f)+e vV sinhu+f)
FIG. 2. Particle current as a function of the external load, Eq. (21)
(12), with one parameter of the potential varied for (a), u for (b),

v for ()] and the other two kept constant. For all curvgl,  One can ascertain th&,> Py, i.e., 7<1, for all values of
=0.1. the parameters whe, >0, as it must be. The current and

henceP,,; monotonically diminish witlf and become zero at
U=2LJ. (17) f=1fg. Interestingly, the dependend®,(f) exhibits more
complicated behavior. For largé more precisely fovV>v
With the set of parameter values taken from R@f]: v +2U, the power input also drops wiftand becomes zero at
=145, =55, u=45, 2 =10°m, ky=10°s"%, and y f="f,. Note that the meq_ua_llltys< u<fy holds, bothfg and
=10 s}, the particle velocityl{ at zero force is 3.24 fo tending to th'e same limit (the former from the left, the
x10~7 m/s and the stopping fordg, (at T=300 K) is 6.9 latter from the rightatV—cc. Thus only at very larg®, P;,

X 10712 N. It is worthy of mention that the calculated values @"d Pour Change sign simultaneously and the energy trans-

of the velocity and the stopping force reproduce the correduction is completely reversiblga similar observation was

sponding experimental data for molecular mot@kwithin ~ Made for the ECC modgP3]). For V=uv +2u, the depen-
an order of magnitude. denceP;,(f) can exhibit nonmonotonic behavior and, what

is especially important, the power input remains positive for
all values off. The latter circumstance implies that the pro-
cess is not reversible when the highest potential peak is
The model discussed in this paper is based on an obviewer thanv +2u. This remark is also in agreement with the
ously nonequilibrium mechanism. Every time the potential isconclusion of Ref[23], pointing to a formal analogy be-
rapidly changed, the particle distribution relaxes to the equitween the present model and the ECC model.
librium profile and, as a result, some portion of the energy The efficiency increases with for an adiabatically slow
input into the system is dissipated to the thermal bath as eodulation,y<<ky, where the kinetic approach holds. Figure
heat. The energetic efficiency is one of the simplest thermo3 illustrates the variation of the function(f), Eq. (21), with

B. Efficiency
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10 - . ‘ . - - . , There exists another more attractive way to achieve a high
(c) 1 efficiency. As panel(a) of Fig. 3 suggests, the maximal effi-

08 - — . ciency (and the operating range@f the motor grows with

— =50 ] rising V. Particularly striking are very high values of at
06| = g forces close td ¢ for largeV. In this range of and provided
! e<1, Eq.(21) is reduced to

f -1
n= u

14 1+¢
ffue

(22)

0.2 - -

Using this approximate expression, one can readily see that

I 1 L 1 2 n 1 . . . .
00 the efficiency reaches its maximum

(b) |
u=35 Tm=1-2J(1+{)e (23

06| 45 ] at f=f,=[1-(1+)eJu<fg. As expected, the corre-
= 50 ] sponding currentd(f,)/ko=(1/2)Ve/(1+)ue™ "’ is very
04l ] small but nonzero. It follows from Eq23) that the maximal
efficiency of the motor tends to the ideal limit of unity, as the
highest potential barrier increases. This conclusion is the
main result of the paper. The idea behind it is easy to com-
. prehend. At large values &f, the stopping force is close to
@) | its limiting valueu (due to suppression of the backward mo-
b V=18, ] tion). When the load forcé is nearf,,, (u—f,)<1, the
) difference between the well energiesu2(f) becomes very
] small. This means that the motor works under quasiequilib-
il 145 1 rium conditions at every given time instant and the energy
1 loss can be made arbitrarily small, in agreement with the
04 - ] observation made in Ref14] that the main energy loss re-
I 10 1 sults from backward steps.
02 1 Let us discuss the efficiency of the model in terms of the
: Fokker-Plank approach, restricting the consideration to the
0.0 : : ‘ : : w - ' optimal modulation regime. The power output is easily found
f using Egs(15) and(17). The power input is determined by
[12,24
FIG. 3. Efficiency as a function of the external load, E2{),

with the parameters of the potential varied as in Fig. 2. For all aa B 3 .
curvesy/ky=0.1. Pin=v . [UT(x)=U"(X)][P~(x)=P7(x)]dx.

0.8 |

0.2 i

0.0 1 . 1 . 1

the parameters of the potential. All the curves exhibit a simi- (24)

lar nonmonotonic behavior: The efficiency is equal to zero atrhe main contribution into the integral is attributed to the
f=0, linearly increases witfi in the regionf<fs, reaches vicinity of the potential wells located &t/2 and 3./2, where
its maximal valuen,,, and rapidly goes to zero whérap-  the potential profiles are assumed identical, ild.(x)
proacheds. An initial increase in efficiency witl is attrib- ~ ~U~(x) +2u for x close toL/2 andU ™ (x)=U"(x) +2u
uted to the equalization of the potential wells and hence tdor x close to 3./2. In the low-frequency domaig>1, this
the lowering of the energy loss. Whér-fs, Py, goes to  |eads to the power input estimated Bg=4uyR(L) and
zero wherea®;, remains finite, and hencg— 0 (except the  hence to the efficiency, E418), expressed by

idealized case o¥/=o when »=1 atf=fg), which is in

agreement with the conclusion of Ref&,14] that the effi- f 2J%(0)

ciency vanishes at stalling conditions= ). The maximum =4 1+ W : (25

of »(f) arising from the competition between the two above-

mentioned effects is located nefy. The currentJ*(0)<0 representing the backward motion

As Fig. 3[panel(b)] shows, the lessan, the higher the vanishes whelW—c and Eq.(25) coincides with the predic-
efficiency. In particular, a linear initial growth af is char-  tion of the kinetic approach, Eq23), in this limit.
acterized by its slope proportional @ . The point is that a Our last remark in this section concerns so-calieders-
drop in the relative well energy cuts the relaxation-induced ible ratchets[24] which also achieve the maximal possible
energy loss and hence leads to an increase in the motor eféfficiency at certain conditions. Though the operating mecha-
ciency. It should be remembered, however, tham &swvers, nism of this ratchet type is essentially differefuotential
the current and the stopping force also red(see Fig. 2, so  barriers and wells are modulated out of phase and vary
that the operating range of the ratchet shrinks. gradually, whereas our model implies in-phase rapid modu-
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lation), the result for the efficiency appears very similar to model can be tuned so as to take the maximum advantage of
that obtained hergcf. Eq. (23) with Eq. (15) in Ref.[24]].  the asymmetry between the rightward and leftward motion
The origin of such likeness will be discussed elsewhere. and to involve, in essence, no useless stages in the working
cycle. Moreover, the efficiency of the Brownian motor con-
IV. CONCLUSIONS sidered here is shown to tend to the ideal limit of unity
) ] . provided that the highest peaks of the potential are high
In this paper we have considered a flashing ratchet mod@nough to become factually impenetrable. In other words,
where a particle moves unidirectionally in a periodic poten-g,ch a high efficiency is reachable when the backward mo-
tial (with two nonequivalent wells within a peripdlipping  tion is locked and thermally activated hopping between en-
between two identical states shifted by a half a periodergy wells occurs under quasiequilibrium conditions at every
Within the framework of the kinetic approach, we have ob-giyen time instant and the energy loss can be made arbitrarily
tained explicit expressions for the steady-state current, Egmall. We have thus demonstrated with the analytically treat-
(12), and the energetic efficiency, E1), which are the  gple example that the scenario of the potential modulation
quantities of paramount importance in the context of Brownroposed in Ref|10] leads to high-efficiency flashing ratch-
ian motor operation. Using these expressions, we have angs not only without(as shown earlief14]) but also with

lyzed and discussed in detail the role of the model paramgiffysive steps involved in unidirectional motion generation.
eters in the particle transport. The main results of the kinetic

consideration have been supported by the simple estimates
obtained within the Fokker-Plank approach. ACKNOWLEDGMENTS
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